Tiling a Holey Badge with Two Pentahexes

Introduction

A polyhex is a plane figure formed by joining equal regular hexagons edge to edge. A pentahex is a polyhex with 5 cells. There are 22 pentahexes, not distinguishing reflections and rotations.

Let a polyhex badge be a polyhex whose cell centers form a convex hexagon whose alternate sides have equal length. Here I study the problem of arranging copies of two given pentahexes to form a badge, allowing 1-cell holes in the badge.

A triangular polyhex is an extreme form of a badge. Many of the solutions below are triangular. See the bottom of the page for non-triangular variants.

Nomenclature

Table of Results

This table shows the number of tiles in the smallest known holey badges. If you find a smaller badge or solve an unsolved pair, please write.

 ACDEFHIJKLNPQRSTUVWXYZ
A842684675456712126512948
C85697116865556966755610
D455694665555578659628
E26569466754681210566667
F696612681167579243268247413
H879912666561312668
I4114466666556861779121247
J666686655356556359536
K78661165555129954
L565766655555676576366
N455575535555555558546
P555456555555555555545
Q6556713661255561215651010713
R765891285965561012579769
S129712246575512101097
T1268103217665515129138
U666566739555651096109612
V5756869557555791365777
W12596241296851091056
X95667125355107976
Y462648434644767867664
Z8108713766651391274

Navigation

[2 Tiles] [3 Tiles] [4 Tiles] [5 Tiles] [6 Tiles] [7 Tiles] [8 Tiles] [9 Tiles] [10 Tiles] [11 Tiles] [12 Tiles] [13 Tiles] [15 Tiles] [17 Tiles] [24 Tiles] [32 Tiles]

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

15 Tiles

17 Tiles

24 Tiles

32 Tiles

Non-Triangular Variants

Last revised 2026-01-02.


Back to Polyhex Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]