A scaled pentabolo is a pentabolo whose size may be altered without changing its shape. In geometric terms, it is a family of similar pentaboloes.
A trapezium (trapezoid in Canada and the U.S.) is a plane figure with four sides, two of them parallel. A isosceles trapezium is a trapezium whose two non-parallel sides have the same length.
For every pair of scaled pentaboloes, I show an isosceles trapezium that they can tile, using at least one of each, and using as few tiles as known to be possible. If you find a smaller solution or solve an unsolved case, please write.
Bryce Herdt found improved solutions.
See also
Theoretically, scaled pentabolo 24 and any other scaled pentabolo can together tile an isosceles trapezium. I do not have tilings for all such pairs of scaled pentaboloes.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | ? | • | ? | ? | ? | ? | ? | 5 | 4 | ? | ? | ? | 4 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 26 | ? | ? | 3 | ? | ? | 7 |
8 | 18 | 5 | ? | ? | ? | 36 | ? | • | 4 | ? | 20 | 4 | ? | ? | 4 | ? | 3 | ? | ? | ? | 14 | ? | ? | ? | ? | 79 | 4 | 4 | 7 | ? |
9 | 8 | 4 | 7 | 6 | 8 | 5 | 7 | 4 | • | 8 | 7 | 7 | 6 | 6 | 5 | 6 | 8 | 5 | 6 | 8 | 4 | 7 | 6 | 4 | 6 | 4 | 3 | 4 | 5 | 3 |
24 | ? | 26 | 52 | 3 | ? | 23 | ? | ? | 4 | ? | 26 | 26 | ? | ? | 4 | 42 | 23 | 45 | 66 | 34 | 12 | ? | ? | • | ? | 66 | 14 | 43 | 12 | 33 |
26 | ? | ? | 14 | ? | ? | 6 | ? | 79 | 4 | ? | 6 | ? | 4 | ? | 7 | ? | ? | 35 | 41 | ? | 25 | ? | ? | 66 | ? | • | 5 | ? | ? | ? |
27 | 5 | 3 | 7 | 21 | 14 | 18 | 11 | 4 | 3 | 8 | 7 | 7 | 9 | 37 | 7 | 32 | 23 | 25 | 21 | 25 | 4 | 15 | 16 | 14 | 35 | 5 | • | 7 | 5 | 7 |
30 | 9 | 7 | 24 | 7 | ? | 7 | ? | ? | 3 | ? | 7 | 7 | ? | ? | 3 | 21 | ? | 64 | 16 | ? | 22 | ? | ? | 33 | ? | ? | 7 | 28 | ? | • |
Tiles | ||||||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 |
14 | 15 | 16 | 18 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 28 | 32 | 33 | 34 | 35 | 36 | 37 |
41 | 42 | 43 | 45 | 52 | 64 | 66 | 79 |
Last revised 2025-10-13.